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Abstract
Aim Effects of elevated CO2 on N relations are well
studied, but effects on other nutrients, especially
micronutrients, are not. We investigated effects of
elevated CO2 on response to variation in boron (B)
availability in three unrelated species: seed geranium
(Pelargonium x hortorum), barley (Hordeum vulgare),
and water fern (Azolla caroliniana).
Methods Plants were grown at two levels of CO2 (370,
700 ppm) and low, medium, and high B. Treatment
effects were measured on biomass, net photosynthesis
(Pn) and related variables, tissue nutrient concentrations,
and B transporter protein BOR1.
Results In geranium, there were interactive effects (P<
0.05) of B and CO2 on leaf, stem, and total plant mass,
root:shoot ratio, leaf [B], B uptake rate, root [Zn], and
Pn. Elevated CO2 stimulated growth at 45 μM B, but
decreased it at 450 μM B and did not affect it at
4.5 μM B. Pn was stimulated by elevated CO2 only at
45 μM B and chlorophyll was enhanced only at
450 μM B. Soluble sugars increased with high CO2

only at 4.5 and 45 μM B. High CO2 decreased leaf [B]
and B uptake rate, especially at 450 μM B. Though
CO2 and B individually affected the concentration of
several other nutrients, B x CO2 interactions were
evident only for Zn in roots, wherein [Zn] decreased
under elevated CO2. Interactive effects of B and CO2

on growth were confirmed in (1) barley grown at 0, 30,
or 1,000 μM B, wherein growth at high CO2 was
stimulated more at 30 μM B, and (2) Azolla grown at 0,
10, and 1,000 μM B, wherein growth at high CO2 was
stimulated at 0 and 10 μM B.
Conclusion Thus, low and high B both may limit
growth stimulation under elevated vs. current [CO2],
and B deficiency and toxicity, already common, may
increase in the future.

Keywords Azolla . Barley. Boron stress . Boron
transporter protein (BOR1) . Geranium . Nutrients .

Photosynthesis

Introduction

The growth of most plants is enhanced at elevated,
relative to current, levels of atmospheric CO2, and
this enhanced growth results in greater demand for
mineral nutrients (e.g., Campbell and Sage 2002;
Hagedorn et al. 2002). If nutrient availability or plant
uptake does not increase to meet this enhanced
nutrient demand, then decreases in the concentrations
of nutrients will occur in at least some tissues of
plants grown at elevated CO2. Consistent with these
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expectations, several past studies have reported that
high-CO2-stimulation of plants under nutrient-deficient
conditions is less, or even absent, when compared
to nutrient-sufficient conditions (Cure et al. 1988;
Coleman et al. 1993; Ziska 2003). Because elevated
CO2 is expected to alter plant tissue nutrient
concentrations, many studies have examined effects
of elevated CO2 on nutrient relations, but most
previous studies have focused on macro-nutrients,
especially N, (e.g., Ehleringer et al. 2002; Ellsworth
et al. 2004; Sicher 2005; Tang et al. 2006; Taub and
Wang 2008 and references therein), and only a few
have examined CO2 effects on micro-nutrient relations
(Norby et al. 1986; O’Neill et al. 1987; Manderscheid
et al. 1995; Fangmeier et al. 1997; Peñuelas et al.
1997, 2001; Prior et al. 1998; Blank and Derner 2004;
Pal et al. 2004; Luomala et al. 2005; Jin et al. 2009).

In general, growth of plants under elevated (vs.
current) CO2 typically decreases the concentration of
N, especially in leaves, due largely to declines in
rubisco (ribulose 1,5-bisphosphate carboxylase/
oxygenase) levels in leaves, and high-CO2 decreases
are usually greater in C3 than C4 species (e.g., ca. 20
vs. 5% decreases respectively for leaf %N; Ehleringer
et al. 2002). Other macro-nutrients also often decrease
in concentration with growth in elevated CO2, though
responses can differ among nutrients within a species
(Table 1, for examples). Though few studies to date
have examined effects of elevated CO2 on tissue
micronutrient concentrations, the limited results from
these studies, summarized in Table 1, indicate (1) that
CO2 effects will be variable among species, tissues,
and micro-nutrients; (2) that high CO2 will often
decrease micro-nutrient concentrations; and (3)
decreases in micro- (and macro-) nutrient concentra-
tions may be more prevalent in seeds compared to
leaves. For example, the responses among related
species (barley vs. wheat), and among cultivars
within a species (within barley and wheat separately),
to micronutrient stress and elevated CO2 differed
(Manderscheid et al. 1995).

There is evidence that elevated CO2 has interactive
effects with other aspects of nutrition, though this has
not often been examined. For example, in an
interactive-effect study in wheat, Fangmeier et al.
(1997) observed complex interaction among CO2,
nitrogen availability, and ozone in spring wheat.
Similarly, Coleman et al. (1993) observed CO2 x N
effects in Abutilon theophrasti and Amaranthus

retroflexus that were often mediated by effects on
development. Hagedorn et al. (2002) found that soil
fertility and CO2 may have interactive effects and
these interactions may be species dependent. Specif-
ically, on an acidic loam soil, CO2 enrichment
suppressed net accumulation (total content in bio-
mass) of nine (of 11) investigated mineral nutrients in
beech trees (significant only for P, S, Zn), but
stimulated it for 10 of 11 nutrients in spruce trees
(significant only for Fe, Zn); in contrast, on nutrient-
rich calcareous sand, increased atmospheric CO2

enhanced nutrient accumulation in both species
significantly (Hagedorn et al. 2002). Similarly, Blank
and Derner (2004) observed interactive effects between
soil fertility (low- and high-fertility soils) and CO2 on
various aspects of plant and soil properties in Lepidium
latifolium, including effects on plant nutrient concen-
trations that varied among the nutrients examined. To
our knowledge, only one previous study has examined
interactive effects of CO2 and micronutrients on plant
growth and function: i.e., Jin et al. (2009) examined
interactive effects of CO2 and Fe species (FeEDTAvs.
Fe(III) oxide) on tomato, and found that the combina-
tion of elevated CO2 and low Fe increased Fe uptake
ability, and that CO2 affected [Fe] only with Fe oxide.

Notably, we can find only six previous studies
wherein effects of elevated CO2 on tissue B concen-
trations were investigated (Table 1; Norby et al. 1986;
O’Neill et al. 1987; Peñuelas et al. 1997, 2001;
Luomala et al. 2005; Liu et al. 2007). As chance would
have it, each of these studies (four reports on trees and
two on shrubs) examined CO2-responses in plants
grown in soil characterized by the authors as “nutrient
poor” or “low in N”, and B soil availability was
undetermined and un-manipulated in these studies. The
paucity of previous research on B x CO2 effects is
striking, since (1) among all essential plant nutrients, it
is thought that B has perhaps the narrowest range of
tissue concentrations over which B levels are adequate
and not stressful (i.e., not limiting or toxic) (e.g.,
Marschner 1995), and (2) B stress is common and
economically important in agriculture world-wide
(Shorrocks 1997). Though B requirements, as well as
thresholds for B deficiency and toxicity, vary signifi-
cantly among species and categories (e.g., grasses vs.
dicots; Blevins and Lukaszewski 1998), available B
levels below ca. 2–5 μM usually cause B deficiency
(e.g., El-Shintinawy 1999; Wimmer et al. 2005) and
levels above 1,000 μM typically induce toxicity
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(though levels as low as 200 μM have been reported to
be stressful in some species) (Reid et al. 2004).

To date, the most-widely-accepted role of B in
plants is that of a structural function in plant cell walls
(Brown et al. 2002; Goldbach 1997; Kobayashi et al.
1996; Matoh 1997; Power and Woods 1997). This
structural role of B in cell walls is due to its capacity
to form diester bridges between adjacent cis-hydroxyl
containing molecules, such as mono-, oligo-, and
polysaccharides, and diols and hydroxyacids (Power

and Woods, 1997). B also is involved in plant
reproduction, which may or may not be related solely
to the structural role of B in cell walls (Blevins and
Lukaszewski, 1998; Marschner 1995). Other specific
functions of B have been postulated as well (Blevins
and Lukaszewski 1998; Bolaños et al. 2004; Dordas
and Brown 2000), and boron deficiency can affect
several metabolic processes; e.g., cell division and
elongation, metabolism of nucleic acids, protein
synthesis, metabolism and transport of carbohydrates,

Table 1 Summary of past studies examining effects of elevated (relative to current) CO2 on the concentration of micro-nutrients

Species Tissue [Nutrient] increase [Nutrient] decrease [Nutrient] no change Source

Herbaceous

Hordeum vulgare Leaves S N Ca,Fe,K,Mg,Mn,P,Zn Manderscheid et al.
1995

Seeds K Fe,N,S,Zn Ca,Mg,Mn,P Manderscheid et al.
1995

Triticum aestivum Leaves P,S K,Mg Ca,Fe,Mn,N,Zn Manderscheid et al.
1995

Seeds K Ca,Fe,Mg,Mn,N,S,Zn P Manderscheid et al.
1995

Triticum aestivum Leaves Ca,K,Mg,Mn,N,P,S,Zn Fe Fangmeier et al. 1997

Seeds Ca,Fe,K,Mg,Mn,N,P,S,Zn Fangmeier et al. 1997

Gossypium hirsutum Leaves Ca,Fe,K,Mg,Mn,N,P,S,Zn Prior et al. 1998

Seeds Cu,Fe,K,N,Zn Ca,Mg,Mn,P Prior et al. 1998

Lepidium latifolium Shoots Mg Ca,Fe,K,Mg,Mn,N,P,S Blank and Derner
2004

Trifolium
alexandrium

Leaves P N Ca,Fe Pal et al. 2004

Lycopersicon
esculentum

Shoots Fe (with Fe(III)
oxide)

Fe (with FeEDTA) Jin et al. 2009

Roots Fe (with Fe(III)
oxide)

Fe (with FeEDTA)

Shrubs

Citrus aurantium Leaves B Ca,N,Mg,Mn Cu,Fe,K,Na,P,S,Zn Peñuelas et al. 1997

Erica arborea Leaves K,S Ba,B,Sr Al,Ca,Cd,Co,Cr,Cu,Fe,Mg, Peñuelas et al. 2001
Mn,Mo,N,Na,Ni,P,Pb,Si,
Ti,V,Zn

Myrtus communis Leaves Mg,Mn,S Ba,B,N,Sr Al,Ca,Cd,Co,Cr,Cu,Fe,K, Peñuelas et al. 2001
Mo,Na,Ni,P,Pb,Si,Ti,V,Zn

Juniperus communis Leaves Al,Ca,Fe,K,Mg,Mn, Ba,Co B,Cd,Cr,Cu,Mo,N,Na, Peñuelas et al. 2001
S,Ti Ni,P,Pb,Si,Sr,V,Zn

Trees

Quercus alba Whole-
seedling

Fe B,Ca,Mg,Mn,N,S,Zn Al,Cu,K,P Norby et al. 1986

Liriodendron
tulipifera

Whole-
seedling

B,N,S Al,Ba,Ca,Cu,Fe,K,Mg, O’Neill et al. 1987
Mn,P,Sr,Zn

Pinus sylvestris Leaves Mn Cu,N,P,S B,Ca,Fe,K,Mg, Luomala et al. 2005

Populus tremula Leaves K,P N,B Ca,S,Mg,Mn,Cu,Fe,Zn Liu et al. 2007

Betula papyrifera Leaves K,P N,B Ca,S,Mg,Mn,Cu,Fe,Zn Liu et al. 2007
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synthesis and metabolism of phenolics, and photo-
synthesis (Blevins and Lukaszewski 1998; Goldbach
1997; Kouchi 1977; Mishra et al. 2009).

Recently, the first two B-transport membrane
proteins have been identified and characterized: one
involved in active transport, BOR1, and one involved
in facilitated diffusion, the NOD26-like intrinsic
protein (NIP), NIP5;1 (Miwa et al. 2009). BOR1 is
a B efflux transporter expressed in roots and leaves
and is up-regulated under B-deficiency conditions
(Takano et al. 2002). The channel protein NIP5;1 is
crucial for B uptake in plants under B limitation
(Takano et al. 2006). BOR1 increases B supply to the
shoots by loading B from the xylem parenchyma into
the xylem (Takano et al. 2002). Under toxic concen-
trations of boron, BOR1 is degraded via endocytosis
(Takano et al. 2005). Under elevated CO2, one might
expect that expression levels of BOR1 and/or NIP5
proteins in roots will change, if elevated CO2 is
altering nutrient demand.

The present study aimed to investigate effects of
elevated CO2 on growth, photosynthesis, and nutrient
(especially B) relations in geranium (Pelargonium
hortorum cv. Maverick White; a dicot) plants grown
for 30 days while supplied with one of three different
B concentrations, ranging from potentially sub-optimal
(4.5 μM) to near-optimal (45 μM) to potentially supra-
optimal (450 μM). We tested the apriori hypothesis
that elevated CO2 would (1) exacerbate B deficiency at
low levels of B availability, and (2) decrease B toxicity
at high levels of B; in both cases, by enhancing plant
growth and thus increasing the dilution of B in tissues.
To determine if the CO2 x B effects observed in
geranium are common in other species, we examined
effects of CO2 in (1) barley (Hordeum vulgare; a
monocot) grown at 30 μM B and transferred to 0, 30
or 1,000 μM B and (2) water fern (Azolla caroliniana)
grown at 10 μM B and transferred to 0, 10, or
1,000 μM B. For these latter two species, we expanded
the range of B levels to increase the severity of B
deficiency or toxicity.

Materials and methods

Plant material and B and CO2 treatments

Seeds of geranium plants (Pelargonium x hortorum
cv. Maverick White) were sown into foam cubes

(15-mm×15-mm×30-mm each; LC1-type, Smithers-
Oasis North America, Kent, Ohio) and irrigated with
complete fertilizer solution (Hoagland’s). After
40 days, when seedlings had 3-to-4 true leaves,
seedlings were transferred to opaque 4 L plastic tubs
filled to volume with complete Hoagland’s solution,
as in Mishra et al. (2009). The tubs had opaque lids
with two evenly-spaced 2-cm-diameter holes through
which seedlings were suspended (by wrapping with
thin strips of foam around the root-shoot interface),
such that the root system was enclosed in the tubs and
shoots were above the level of the tub lids. Seedlings
were then allowed to acclimate for 10 days to minimize
transplant stress. Plants were germinated and grown in a
greenhouse, under a 20–28°C temperature range and
with supplemental light to extend the photoperiod to
14 h (6 am–8 pm; minimum PAR=200 μmol m−2 s−1).

For B and CO2 treatments, plants were transferred
to (otherwise) complete nutrient solutions containing
one of three levels of B (4.5, 45, or 450 μM, based on
results in Mishra et al. 2009; three replicate tubs per B
level), and then 9 tubs containing 2 plants per tub
were kept under two different concentrations of CO2

(thus 18 tubs total) in controlled-environment chambers
[one at 370±20 ppm (ambient) and one at 700±20 ppm
(elevated) CO2]. Each tub contained two plants, and
these two plants were averaged to generate the value
for the tub, with mean tub values being the experi-
mental replicates. Nutrient solutions, checked regularly
and maintained at pH 5.6 with addition of 1 N HCl or
KOH, were changed weekly, which was determined in
preliminary experiments to be frequent enough to
prevent depletion of nutrients. Each tub was aerated
by constant bubbling of nutrient solution to make it
homogeneous. Plants were grown at 23°C day/19°C
night with uncontrolled humidity (typically>50%),
under a 16-h photoperiod, and at a light intensity of
300 μmol m−2 s−1 PAR (photosynthetically active
radiation), which provided 17.28 mol m−2 d−1 of
PAR. This light level is optimal for this geranium
cultivar (Mishra et al. 2009). Light levels were
monitored twice weekly with a line quantum sensor
(model LQSV-E, Apogee Instruments, Inc. Logan,
Utah); chamber CO2 and temperature levels were
monitored several times a day with calibrated and
independent sensors; plants were rotated within cham-
bers every other day. Plants were grown in the above
growth conditions for 30 d, during which time, plant
biomass increased in all treatments.

Plant Soil

Author's personal copy



To confirm B x CO2 effects on biomass observed in
the above experiment, we conducted two additional
experiments, wherein we grew barley (Hordium
vulgare) and aquatic fern (Azolla caroliniana), respec-
tively. Based on results from the geranium experi-
ment, in barley and A. caroliniana, the severity of
both low- and high-B stress was increased by
decreasing [B] in the low-B treatment and increasing
[B] in the high-B treatment. Barley plants were grown
hydroponically as above under three concentrations of
B (0, 30 and 1,000 μM) and two levels of CO2 (370
and 700 ppm). Seeds were sown into soil, and after
15 d, when seedlings had three to four true leaves,
they were rinsed to remove soil on roots and
transferred to hydroponic tubs containing complete
nutrient solution (including 30 μM B) and allowed to
acclimate for 7 d to minimize transplant stress. At this
time, subsets of plants were transferred to nutrient
solutions containing 0 or 1,000 μM B (in otherwise
complete nutrient solution), while control plants
continued to receive 30 μM B. Three replicate plants
(in separate tubs) at each B level were grown under
ambient (370 ppm) or elevated CO2 (700 ppm) in
growth chambers. Plants were grown at 25°C day/
20°C night, under a 16 h photoperiod, and at a light
intensity 800 μmol m−2 s−1 PAR. Plants were kept for
30 days of treatment prior to harvest. Nutrient
solutions were changed weekly, and plants were
rotated within chambers every other day. For Azolla,
plants were grown for >2 weeks in a nutrient solution
designed for algae (WC medium: 250 μM CaCl2,
150 μM MgSO4, 50 μM K2HPO4, 11.7 μM Fe-
EDTA, 0.9 μM MnCl2, 0.08 μM ZnSO4, 0.05 μM
CoCl2, 0.04 μM CuSO4, 10 μM H3BO3, and
0.0037 μM (NH4)6Mo7O24). Plants were transferred
to plastic-tubs (600 ml) with the above nutrient
solution and one of three B concentrations (0, 10, or
1,000 μM). Four replicates of each B treatment (=12
tubs) were kept under ambient CO2 (370 ppm) and
another 12 tubs under elevated CO2 (700 ppm) in
controlled-environment chambers. Prior to harvest,
plants were grown for 10 days at 25°C/20°C (day/
night), under a 16 h photoperiod and 200 μmol m−2 s−1

PAR light intensity.

Growth and nutrient analysis

Entire plants were harvested and then immediately
separated into roots, stems, and leaves for geranium

and roots and shoots for barley; intact plants were
analyzed for Azolla caroliniana. Tissues were oven
dried at 70°C for 72 h (to constant mass) and then
weighed. To determine tissue nutrient content, we
followed our previously−reported method (Mishra et al.
2009). Briefly, all harvested tissues were rinsed with
0.1 N HCl, rinsed again with distilled water, and then
oven dried in a forced-air oven at 55°C for 72 h. Tissue
was ground by mortar and pestle into a powder and
0.15 g was digested in a microwave digester (MARS
Express II, CEM Corp., Matthews, North Carolina),
using a modified EPA method (EPA method 3051,
Nelson 1988; HNO3 digestion at 200°C with an
additional peroxide digestion step). Nutrient concen-
tration (B, Ca, Cu, Fe, K, Mg, Mn, P, S, Zn) was
determined with inductively-coupled-plasma optical-
emission spectroscopy (ICP-OES; Model IRIS Intrepid
II, Thermo Corp., Waltham, MA).

Photosynthesis

Steady-state net photosynthesis (Pn; net CO2 exchange)
of recently fully-expanded intact leaves of geranium,
which had developed after the exposure to experi-
mental treatments, was measured with a portable
photosynthesis system with an infrared gas analyzer
(model 6400, LiCOR, Lincoln, Nebraska, USA),
equipped with a 250-mm3 leaf chamber and CO2,
light, and temperature control (as in Mishra et al.
2009). Measurements were made within one min of
insertion of leaves in to the cuvette, and after
stabilization of CO2 and H2O flux, to ensure that
photosynthetic responses reflected those within the
growth chambers. Net photosynthesis of plants was
measured at the same CO2 levels at which the plants
were growing (either 370 or 700 ppm CO2) at a light
level of 300 μmol m−2 s−1 PAR.

Chlorophyll and carbohydrate content

Chlorophyll and carbohydrate content was measured
as in Mishra et al. (2009). Briefly, chlorophyll content
(per fresh mass) in leaves was estimated spectropho-
tometrically after extraction in dimethyl sulfoxide
(DMSO), using the equations of Barnes et al. (1992).
Leaf samples were incubated at 65°C for 1 h and then
cooled to room temperature in the dark prior to
measurements. Total soluble carbohydrate content in
root tissue was estimated by using the phenol-sulfuric
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acid method of Dubois et al. (1956), with minor
modification. Fresh tissues (50 mg dry mass) were
ground in liquid N2, and then mixed with 2 mL of
0.1M phosphate buffer (pH 7.2) and re-ground. The
homogenate was centrifuged at 21,000 g, and then
1 mL of supernatant was taken and mixed with 1 mL
of 5% aqueous phenol. Concentrated sulfuric acid
(5 mL) was added, and absorbance at 470 nm was
determined after 20 min. Glucose was used for
generating a standard curve.

BOR-1 Protein analysis

Total cell protein was extracted from frozen root
tissues (400 mg fresh weight) by grinding in liquid N2

in a mortar and pestle, and then in an extraction buffer
containing [0.5M Tris–HCl (pH 8.0), 50 mM EDTA,
0.1 M KCl, 0.9 M sucrose and 2% β mercaptoethanol].
The homogenates were transferred to a 15 mL tube and
the same volume of Tris-buffered phenol (pH 8.0) was
added. After incubating for 10 min on a shaker at room
temperature, samples were centrifuged at 5,500g for
20 min at 4°C to separate the aqueous and organic
phase. The upper phenolic phase was recovered and
transferred to a fresh tube. This phenol phase was
washed with an equal volume of extraction buffer and
then centrifuged at 5,500g for 20 min at 4°C. The
protein-containing phase was transferred to a fresh tube
and precipitated with 5 volumes of 0.1 M ammonium
acetate in 100% (v/v) methanol and incubated over-
night at −20°C. The precipitate was washed three times
with 0.1 M ammonium acetate in 100% methanol
followed by three times with 80% acetone, and a final
time with 100% acetone. The final protein pellet was
resuspended in sample buffer (Tris–HCl pH 6.8, 2%
SDS, 0.05% β-mercaptoethanol and glycerol). The
total protein concentration of each sample was deter-
mined in triplicate by the Coomassie-dye-binding
method of Ghosh et al. (1988), using bovine serum
albumin as a standard. The colorimetric density of
protein in sample spots on filter-paper discs was
determined using a desktop scanner and densitometry
analysis, using National-Institutes-of-Health imaging
software (Scion, National Institutes of Health,
Bethesda, MD). Proteins were then separated by 1D
SDS-PAGE, transferred to nitrocellulose by electro
(western) blotting, and subjected to immuno-detection
and quantification as in by Mishra et al. (2008). BOR1
protein was detected using a rabbit polyclonal

antiserum generated against a conserved peptide
(GDYPLSATIMSEYANKKTRG) identified from
BOR1 amino-acid sequences available from public
databases and the BOR1 sequence identified in
geranium (Deng 2009).

Statistical analysis

Results were analyzed statistically by two-way (B x
CO2) analysis-of-variance (ANOVA), with B and CO2

levels as fixed factors, using JMP software (SAS
Corp, Cary, NC). Treatment effects were considered
significant if P<0.05 and marginally significant if
P<0.10. Following significant main-factor effects by
ANOVA, Tukey’s test was used to determine significant
differences among treatment levels among main factors.

Results

Though geranium plants were measured and har-
vested after 30 days of experimental treatments,
treatment effects were visible sooner (not shown).
For example, after 20 days, mild chlorosis was
observed in leaves of plants grown under low and
high [B] in elevated CO2 (mostly in the youngest
leaves at low B, and in the older leaves with high B).
However no distinct treatment effects were observed
in roots, except that they appeared more-branched at
high B and high CO2.

There were significant B x CO2 interactive effects
on dry mass of leaf, stem, and total mass (similar
trend but non-significant effects on flower mass)
(Fig.1a–d; Table 2). For example, peak biomass of
leaves, stems and whole-plants was observed at
450 μM at ambient CO2, but at 45 μM B at elevated
CO2. When comparing effects of elevated vs. ambient
CO2 within each B level, stimulation of growth at
high CO2 was observed only at 45 μM B, with no
stimulation at 4.5 μM B, and with decreased biomass
with high CO2 at 450 μM B. No B x CO2 effects were
observed for roots, though root mass was increased by
high CO2 (Fig. 1e; Table 2). However, there were
interactive effects of B and CO2 on root:shoot ratio,
and root:shoot ratio was increased by elevated CO2

(Fig. 1f; Table 2).
As expected, elevated CO2 increased net photosyn-

thesis (Pn), by increasing leaf internal CO2 concentra-
tion (Ci), but elevated CO2 had no effect on stomatal
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conductance (Gs) in geranium (Fig. 2a–c; Table 2).
However, when comparing Pn in elevated vs. ambient
CO2 within each B level, elevated CO2 stimulated Pn
only at 45 μM B. Also, Pn was greatest at 4.5 μM B at
ambient CO2, while B had no effect on Pn at elevated
CO2. Hence, there were interactive effects of B and
CO2 on Pn. No B x CO2 effects were observed on total
chlorophyll (Chltot), chlorophyll a:b (Chl a:b), or
soluble sugars (Fig. 2d–f; Table 2). Boron did affect
Chltot and Chl a:b, with maximum Chltot at 45 μM B,
and with inconsistent effects on Chl a:b. Soluble sugar
content was enhanced under elevated, compared to
ambient, CO2 both in leaf and root tissues.

As we anticipated, both B and CO2 had effects on
the concentration of B in plant tissues, and there was
a significant interactive effect of B and CO2 on [B] of
leaf tissue (Fig. 3a,b; Table 2). Leaf and root [B]
increased with increasing B availability (marginally
significant in roots), with larger increases in tissue [B]
when comparing 450 to 45 μM B than 45 to 4.5 μM.
On average, across all B levels in both roots and
shoots, elevated CO2 decreased tissue [B], but within
each B level individually, this high-CO2 decrease was

significant only in leaves at 450 μM B, wherein [B]
was reduced by 55% by high CO2; hence, the
significant B x CO2 interaction in leaves. Similar
patterns for [B] were observed for root-specific
uptake rates of B (total g plant B per g of root); i.e.,
B uptake rate increased with B availability (especially
at 450 μM B), decreased at high CO2, and the high-
CO2-related decrease was significant only at 450 μM
B (ambient was 2.5 times that at elevated CO2),
resulting in a significant B x CO2 effect (Fig. 3c;
Table 2). Neither B nor CO2 had significant effects on
the relative content of the B transporter, BOR1,
though elevated CO2 tended to increase BOR1
content (Fig. 3d; Table 2). Content of BOR1 remained
almost constant in both CO2 treated plants at 450 μM
B. Also under elevated CO2 among all the treatments
of B, BOR1 declined at 450 μΜ.

Along with B, the concentration of other nutrients
(Ca, Cu, Fe, K, Mg, Mn, P, S, and Zn) in tissues was
also measured in leaves and roots. Because effects of
elevated CO2 on nutrient concentrations have been
shown previously in multiple studies (e.g., Table 1),
we restrict presentation of results here to nutrients
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that were affected by B or for which there were
significant B x CO2 interactions in either leaves or
roots (Fig. 4a–d). However, as in many past studies,
elevated CO2 affected the concentration of nutrients
in most instances here (all but P in roots and shoots,
Mg and S in roots, and Fe and Zn in shoots; not
shown). B affected [P] in leaves (decreasing [P] at
45 μM B; P=0.0078), and both [Fe] (highest [Fe] at
450 μM B; P=0.0279) and [Zn] in roots (highest at
450 μM B in ambient CO2 only; P=0.0188).
Interactive effects of B and CO2 were evident only
for Cu in roots (P=0.0100); marginally-significant
effects were observed for Zn in roots (P=0.0655).

As with geranium, we observed B x CO2 effects on
biomass in barley. While elevated CO2 increased
shoot, root, and whole-plant biomass on average in
barley, when comparing elevated vs. ambient CO2

within each B level, growth was stimulated signifi-

cantly by high CO2 only at 30 μM B for shoots, roots,
and whole-plant biomass (Fig. 5a–c). In addition,
while shoot, root, and whole-plant biomass was
greatest at 30 μM B in elevated CO2, no decline in
biomass was evident at 0 vs 30 μM B at ambient
CO2, and declines in biomass at 1,000 vs. 30 μM B
were not significant. A significant B x CO2 interaction
was also observed for root:shoot biomass in barley,
wherein B had no effect on root:shoot mass at
ambient CO2, but root:shoot mass increased with
increasing B at elevated CO2 (Fig. 5d).

We also observed a significant interactive effect of
BxCO2 on dry mass of Azolla caroliniana (Fig. 6),
and these effects were similar to those in geranium
and barley. Total plant mass in Azolla was decreased
by both low and high, relative to medium, B, and
elevated CO2 increased mass. When comparing mass
between elevated and ambient CO2 within each B
level, biomass was enhanced both at 0 and 10 μM B,
but not at 1,000 μM B.

Discussion

The present study found that (1) growth of plants in
elevated, relative to current, atmospheric CO2 affected
B relations, (2) CO2 and B have interactive effects on
growth and function, and (3) elevated CO2 exacer-
bated effects of low B as predicted, but did not
minimize effects of high B as expected; instead, high
CO2 increased B stress at high levels of B. Regarding
effects of elevated CO2 on B relations, high CO2

decreased the concentration of B in plant tissues
(especially leaves), as well as the rate of B uptake by
roots, especially at high B (450 μM). Though not
statistically significant, elevated CO2 also tended to
increase the levels of the B transport protein, BOR1,
at low and medium B (4.5 and 45 μM).

In geranium, we observed interactive effects of
CO2 and B on leaf, stem, and whole-plant dry mass
(flower mass showed a similar non-significant pattern),
root:shoot ratio, net photosynthesis, leaf [B], B-uptake
rate, and root [Zn]. B x CO2 effects were also observed
for shoot, root, and whole-plant biomass in barley
grown at 30 μM B and transferred to 0, 30, or
1,000 μM B, and for whole-plant biomass in Azolla
grown at 10 μM B and transferred to at 0, 10 and
1,000 μM B. In both geranium and barley, statistically-
significant stimulation of growth by elevated CO2 was

Table 2 Results from statistical analysis (P values from
ANOVA) of treatment effects of B, CO2, and their interactions
on various response variables. Geranium plants were grown at
different levels of B (4.5, 45, and 450 μM) and CO2 (370,
700 ppm)

Treatment effects

Variables CO2 B B x CO2

Biomass:

Leaf 0.66 0.59 0.02*

Stem 0.80 0.053 0.007*

Root 0.011* 0.730 0.36

Flower 0.211 0.552 0.240

Total 0.77 0.48 0.007*

Root:shoot 0.005* 0.84 0.029*

Pn 0.001* 0.149 0.042*

Gs 0.330 0.816 0.525

Ci <0.0001* 0.914 0.962

Chlorophyll:

Total 0.100 0.007* 0.078

Chl a/b 0.036* 0.016* 0.167

Sugar

Leaf <.0001* 0.046* 0.55

Root 0.0005* 0.166 0.526

Leaf [B] 0.0001* <.0001* 0.00006*

Root [B] 0.082 <.0001* 0.112

B-uptake rate <.0001* 0.0079* 0.0043*

BOR1 0.25 0.7 0.69

* Indicates significant differences among treatments at P<0.05
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observed at medium B levels, but not at low or high B;
in fact, in geranium at high B, elevated CO2 decreased
biomass relative to ambient CO2 levels. In Azolla,

elevated CO2 stimulated growth and 0 and 10 μM B,
but not at 1,000 μM B. Also, in geranium, peak
biomass of leaves, stems, and whole-plants was
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observed at 450 μM at ambient CO2, but at 45 μM B
at elevated CO2. In barley, peak mass was observed at
0 and 30 μM B in ambient CO2, but at 30 μM B in
elevated CO2, while in Azolla, peak mass was
observed at 10 μM B under both ambient and
elevated CO2.

In geranium, the pattern of B x CO2 effects on
biomass was not reflected in any other response
variable measured, except for shoot:root biomass (i.e.,
the inverse pattern for root:shoot results shown),
suggesting that the pattern of B x CO2 effects on
biomass was likely a result of effects on biomass

allocation. Notably, the pattern of B x CO2 effects on
biomass was unrelated to tissue [B]. Hence, though
low-B plants were smaller than medium B plants at
high, but not low, CO2, consistent with our apriori
prediction that elevated CO2 would increase the
potential for B deficiency, this was not caused by
simple effects on tissue [B]. In contrast, we predicted
apriori that elevated CO2 would decrease the potential
for B toxicity at high B, but in fact, we observed the
opposite, and elevated CO2 caused a decrease in plant
growth at high vs. medium B. Thus, in a future high-
CO2 world, B stress may become more prevalent, at
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both low-B and high-B stress, though the specific
mechanism for this is not known.

The B x CO2 effects on biomass allocation
observed in this study are similar to those observed
by Sicher (2005), where the same trend was seen in
barley roots grown under different P levels and
ambient vs. high CO2. Exposure of plant canopies to
high CO2 concentration often stimulates the growth of
both shoot and root, but the question remains whether
elevated atmospheric CO2 concentration will affect
roots and shoots of crop plants proportionally. Since
elevated CO2 can induce changes in plant structure
and function, there may be differences in allocation
between root and shoot, at least under some con-
ditions (Rogers et al. 1996). It is generally observed
that root:shoot ratio responds to deficits in light
(Boote 1976), water (Kramer and Boyer 1995), and
major mineral nutrients (Cakmak et al. 1994;
Gutschick 1993), with the root:shoot response to a
given factor usually towards diverting dry weight to
the plant part that is the most limiting to growth under
prevailing environmental conditions (Wilson 1988).
However, the effects of elevated atmospheric CO2 on
root-to-shoot are much less clear (Rogers et al. 1996).
The response of root-to-shoot to elevated atmospheric
CO2 is highly variable among species. For example,
there were significant increases in root-to-shoot for

soybean (Glycine max; Rogers et al. 1992) and in
Quercus alba L. seedlings (Norby et al. 1986)
exposed to elevated CO2, while in cotton (Gossypium
hirsutum) grown under field conditions, root:shoot
mass appeared to be unaffected by CO2 concentration
(Prior et al. 1994).

Though increases in photosynthesis and growth are
typical under elevated vs. current CO2 for most C3

species, decreases in tissue nutrient concentrations
often occur too, and not just for nitrogen (e.g.,
Cure and Acock 1986; Sicher and Bunce 1999;
Vandermeiren et al. 2002; Norby et al. 1986;
Roberntz and Stockfors 1998; Fangmeier et al.
1996; Luomala et al. 2005). The increase in biomass
under elevated CO2 is largely attributed to increases
in net photosynthesis and nutrient limitation has
generally been found to suppress this response
(Conroy 1992; McKee and Woodward, 1994; Lloyd
and Farquhar, 1996; Stitt and Krapp, 1999). For
examples, when birch (Betula pendula; Pettersson et al.
1993; Silvola and Ahlholm 1995), loblolly pine (Pinus
taeda; Gebauer et al. 1996), rice (Oryza sativa; Ziska
et al. 1996), cotton (Gossypium hirsutum; Rogers et al.
1993), wheat (Triticum aestivum; Rogers et al. 1996),
and tobacco (Nicotiana tabacum; Geiger et al. 1999)
were grown at various N supplies, elevated CO2 led to
large increases of biomass at the highest N supply,
small increases at a moderately limiting N supply, and
no increase, or even a slight decrease, at the lowest N
supply. Therefore, nutrient supply and, consequently,
the nutrient status of plants should be a critical factor
determining growth responses to the elevated CO2.

In this study, growth at elevated CO2 led to lower
tissue B concentrations in geranium, though this was
statistically significant only in leaves at the highest B
level, and to decreases in B uptake rate. Decreases in
[B] with growth under elevated CO2 have also been
observed in most (Peñuelas et al. 2001; Norby et al.
1986; O’Neill et al. 1987; Liu et al. 2007), but not all
(Peñuelas et al. 1997; Luomala et al. 2005), previous
studies wherein B was measured. Decreases in the
uptake rate of B at high CO2 in this study were
unrelated to the presence or absence of high-CO2-
stimulation of growth, and so are unlikely to be
linked to total plant demand for B. Further, B
uptake rates decreased with elevated CO2 despite
that fact that B concentrations in geranium leaves
decreased under high CO2 to levels approaching B
deficiency at 4.5 and 45 μM B (Blevins and
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Lukaszewski 1998; El-Shintinawy 1999; Wimmer et al.
2005). High-CO2-related decreases in B uptake rate
were also unrelated to levels of expression of the B
transport protein, BOR1, since BOR1 levels were
unaffected by B and increased slightly at elevated
CO2 (4.5 and 45 μM B). In contrast, Jin et al. (2009)
recently reported that several Fe transporter genes were
up-regulated more under elevated than current CO2

levels in tomato plants grown under iron deficiency
conditions. Thus, the reason that B levels decreased at
elevated CO2 in this study remain unknown. However,
we did not examine effects of B and CO2 on levels of
the other known major B transport protein, Nip5;1,
and it is possible that this protein responds differently
than BOR1.
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